SET THEORY HOMEWORK 5

Due Wednesday, November 20.

Problem 1. Suppose that \mathbb{P}, \mathbb{Q} are two posets in the ground model V and $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection, *i.e.*

(1) π is order preserving: $p' \leq p \rightarrow \pi(p') \leq \pi(p)$,

(2) for all $p \in \mathbb{P}$ and $q \leq \pi(p)$, there is $p' \leq p$, such that $\pi(p') \leq q$.

Suppose that G is a \mathbb{P} -generic filer over V. Show that $H := \{q \mid \exists p \in G, \pi(p) \leq q\}$ is a \mathbb{Q} -generic filter over V.

Problem 2. Suppose \mathbb{P} and \mathbb{Q} are two posets and $i : \mathbb{P} \to \mathbb{P}$ is such that:

- (1) $i(1_{\mathbb{P}}) = 1_{\mathbb{O}};$
- (2) If $p' \le p$, then $i(p') \le i(p)$;
- (3) For all $p_1, p_2 \in \mathbb{P}$, $p_1 \perp p_2$ iff $i(p_1) \perp i(p_2)$;
- (4) If A is a maximal antichain of \mathbb{P} , then $i^{"}A := \{i(p) \mid p \in A\}$ is a maximal antichain in \mathbb{Q} .

Suppose also that H is \mathbb{Q} -generic. Show that $G := \{p \in \mathbb{P} \mid i(p) \in H\}$ is \mathbb{P} -generic and that $V[G] \subset V[H]$, where V is the ground model.

Remark: an embedding as above is called a complete embedding

Problem 3. Suppose that \mathbb{P} is a poset, $A \subset \mathbb{P}$ is a maximal antichain, $\phi(x)$ is a formula, and $\langle \tau_p \mid p \in A \rangle$ are \mathbb{P} names such that for all $p \in A$, $p \Vdash \phi(\tau_p)$. Then there is a \mathbb{P} name τ , such that $1_{\mathbb{P}} \Vdash \phi(\tau)$.

Problem 4. Suppose that κ is measurable with a normal measure U and \mathbb{P} is the Prikry forcing at κ with respect to U.

- (1) Suppose that G is \mathbb{P} -generic and let $\langle \alpha_n \mid \alpha_n \rangle = \bigcup_{\langle s,A \rangle \in G} s$. Show that for all $A \in U$, for all large $n, \alpha_n \in A$.
- (2) Suppose that $\vec{\alpha}\langle \alpha_n \mid \alpha_n \rangle$ is an increasing cofinal sequence through κ (not in V), such that for all $A \in U$, $A \in V$, for all large $n, \alpha_n \in A$. Show that $G := \{\langle s, A \rangle \mid s = \{\alpha_i \mid i < |s|\}, \{\alpha_i \mid |s| \le i < \omega\} \subset A\}$ is generic for \mathbb{P} .

Problem 5. Suppose κ is a regular cardinal, \mathbb{P} is κ -c.c., and

 $1_{\mathbb{P}} \Vdash "\dot{B} \text{ is a bounded subset of } \kappa."$

Show that some some $\gamma < \kappa$, $1_{\mathbb{P}} \Vdash "\dot{B} \subset \gamma"$.